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Cluster expansions in dilute systems: Applications to satisfiability problems and spin glasses
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We develop a systematic cluster expansion for dilute systems in the highly dilute phase. We first apply it to
the calculation of the entropy of thi§-satisfiability problem in the satisfiable phase. We derive a series
expansion in the control parameter, the average connectivity, that is identical to the one obtained by using the
replica approach with a replica symmettRS) ansatz, when the order parameter is calculated via a perturba-
tive expansion in the control parameter. As a second application we compute the free energy of the Viana-Bray
model in the paramagnetic phase. The cluster expansion allows one to compute finite-size corrections in a
simple manner, and these are particularly important in optimization problems. Importantly enough, these
calculations prove the exactness of the RS ansatz below the percolation threshold, and might require its
revision between this and the easy-to-hard transition.
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[. INTRODUCTION associated with them, and we introduce the cluster expan-

sion. Section IV is devoted to an explicit calculation of the

Very few analytical tools have been successfully em-entropy ofK-sat: The finitel\_l corrections are also describeo_l.
ployed to study disordered systems beyond mean fieldn Sec. V we discuss the interplay between the percolation
Mainly, one can mention the functional renormalization@nd the easy-to-hard transition. We underline the conse-
group analysig1], high-temperature expansions of finite di- quences of this qalgulatlon in regard to the validity of.the' RS
mensional systeni®], expansion in the concentration of dis- ansatz in the satlsflable_and PM phases. As an application to
ordered models defined on finite dimensional latti@&sand a physical system, we discuss the calculaiion of the paramag-

expansions around mean-field theorip§]. The replica netic PM free energy of the Viana-Br4§] dilute spin glass

) . in Sec. VI. Finally, in Sec. VII we present our conclusions.
method has been used to study dilute spin-glass mode|s Y P

[5-9] and, even if it allows one to obtain a number of ana- Il. K SATISFIABILITY
lytical results, it has been particularly difficult to implement
when applied to dilute systems. It is then desirable to de- The theory of complexity has been developed to charac-
velop other analytical methods to treat these problems, d€rize worstcase instances of hard computational problems
least in their simplest phase. In this paper we investigate ahl3]. A classification scheme, according to the time needed to
independent analytical approach that is based on a clustéind solutions with the best performing algorithms, or to
expansion_ It allows one to compute several “additive” prove that a problem is not solvable, is one of the outcomes
quantities of interest in dilute systems such as the energ9f these studies. Of particular importance is the problet of
density, the entropy, the free energy, etc. We shall apply thisatisfiability[10,14,15 (K-saj, that has been used as a test-
tool to the study of two standard problems, with definitionsing ground for these theories.
recalled below, that are randok satisfiability (K-sab [10] However, it was recently realized that in many interesting
and the Viana-Bray dilute spin glags]. The method is simi- €ases in computer science, it is more relevant to determine
lar to one of the techniques used by Weigt and Hartmanhe properties oftypical, and not worst, realizations of a
[11] in their study of the vertex-cover problem on a randomgiven problem{16]. Random Ksat, defined as the ensemble
graph. The application to other dilute systems is straightforof randomly generated instances fsat, is the paradigm
ward. Some of the advantages of this method with respect tand the goal is now to predict the behavior of a typical ele-
replicas are the following: it allows one to compute the cor-ment of the ensemble.
rections to the thermodynamic limit in a simple way; it al- ~ The relation between phase transitions, or threshold phe-
lows one to pinpoint a possible limitation of the replica sym-nomena, and intractability in random combinatorial prob-
metric (RS) ansatz in the satisfiable and paramagné®ie)  lems, has been stressed by several authibré Problems
phases of dilute disordered systems; and, not less impofhat are very hard to solve in the worst case are not so in the
tantly, it can be straightforwardly adapted to study the evolypical case, unless the control parameter takes values within
|lution of some of the a|gorithm5 devek)ped to ana|Kzeat a finite interval that defines the critical region. Away from the
numerically[12]. critical region, simple algorithms are capable of finding a
The paper is organized as follows. In Sec. Il we define thesolution, or showing that there is no solution, in polynomial
randomK-sat problem and recall its main properties. In Seclime. RandomK-sat has a well-defined threshold phenom-
[l we define the clusters, as well as several useful notion&non.
RandomK-sat, as well as other random optimization
problems, can be mapped onto disordered spin models. The
*Email address: guilhem@1pt.ens.fr mapping is done by associating the cost function in the op-
"Email address: leticia@1pt.ens.fr timization problem to an energy density in the physical sys-
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tem[8]. Consequently, the random character associated with, i.e., a(K=1)=0. WhenK=2, K-sat has a continuous
the choice of different instances in the optimization problemppase transition atr.(K=2)=1. This is a rigorous result

translates into quenched disordered interactions in the physb‘roven by using a mapping on a directed graph prokjtbh
cal system. The most interesting optimization problems like=q; k=3 only numerical estimates far,(K=3) and ap-

K-sat become spin-glass models of a particularly difficultyroximate results obtained with the replica method are avail-
type, where each spin interacts with a finite fraction of otherypje[g]: these yielda (K =3)~4.2.

spins in the sample. These are called dilute spin glasses, and e replica method is a powerful tool of statistical me-

they are interestinger sesince they appear as a case of chapics that allows one to compute the statistical properties
intermediate difficulty between solvable mean-field spingf 5 gisordered physical problem in equilibrium with a ther-
glasses and realistic finite-dimensional ones. mal environment. In order to use it to study optimization
The quest for a threshold value of the _c_ontrol parameteproplems in general, and-sat in particular, one first maps
then becomes a search for a phase transition. Thus all toojge gptimization problem onto a statistical mechanics model.
developgd to treat disordered physical systems in stlat|s.t|cepil1 the case oK-sat, the physical model is a spin-glass model
mechanic$18] can be adapted to study random optimization,yith dilute interactions of random sign. Indeed, a natural

problems. In the context of randoi-sat, two main tech- representation of anit-sat formula is obtained by introduc-
nigues have been used so far: the replica approach in thﬁg anM x N matrix C;;, whose elements are
thermodynamic 1imif8,9,19,2Q and numerical simulations v

complemented by finite-size scaling when the number of 0 if neither x; nor x;eC,

variables remains finitg21]. The same two techniques are .

used in the study of dilute spin glasses. Ci=y1 if xeC 2
RandomK-sat is defined as follows. ConsiddrBoolean -1 if xeC.

variables{xq, ... Xy}, that can take two logical values;

is either true or false, for eaghFirst, choos& indices from  The random generation of clauses is equivalent to a uniform

the set ofN elementsj=1, ... N. Second, assign to each of distribution of the matrice<,; that satisfy the constraints

these indices thditeral x;, or its negationx;, with equal 3iCh =K, VI.

probability p=1/2. Third, construct alause G as the logi- A cost function forK-sat is given by the number of un-

cal “or” (\/) of the K previously determined literals. Kk  satisfied clauses in a given formula. If one identifies the logi-
=3 and N=10, a possible clause i%;\/Xs\/X;. New cal state whe.re(i is true, with a spin5;=1 qnd the logical
clauses are generated in an identical manner, independenfijte Where is false, with a spir§=—1, it is then easy to
of the previous ones. One usually cailsthe total number of verlfy_th_at the following expression counts the number of
clauses. Aformula F is the logical “and” (/\) of M such ~ Unsatisfied clauses,

clauses. It reads

M N
E[{Cii 1Xi}]:|21 5(K)( Z:l CiS,—K

: ©)

F=AMC=AM (VL2 @

_ _ where §€)(a,b) is the Kronecker delta function. Using a
wherez e {X;,X, . .. Xy, Xy} A solution, if it exists, is an  polynomial representation a¥), this expression can be re-
assignment of th&\ variables that satisfiels, that is to say, written as the total energy of a sum of dilupespin-glass
for which all clauses are verified simultaneously. models in a random fieltseveral values gb intervene, how

Note that in the process of generation of a clause, twanany depends on the value ki) [8].
random processes intervene. In the first process, one selectsOnce the energy function is identified, one introduces a
the variables; in the second process, once the variables hafietive temperaturd’, then computes the average free energy
been chosen, one determines the requirements that will bgith the help of the replica trick, and finally takes the limit
imposed on them. We shall later take advantage of this twoT —0 to study the ground state properties of the physical
step process to perform an average over disorder in a convenodel. This gives access to quantities such as, for example,
nient order. the average entropy of the satisfiable phase. This is defined

It is clear that, ifM<N, it will be very easy to find a as the average over disorder of the logarithm of the number
solution to F. Conversely, ifM>N, it will be extremely of solutions. One of the drawbacks of the use of the replica
difficult to satisfy all requirements simultaneously. Indeed, amethod is that an ansatz is necessary to pursue the calcula-
well-defined critical value a;(K) of the parametera tion. Even in the simplest phases, the satisfiable one for
=M/N appears wheM —c andN—c, with their ratio « K-sat, it is not obvious to show that the simplest ansatz,
kept fixed. This limit corresponds to a thermodynamic limit, called replica symmetric, solves the problem exactly. More-
in the physical language. A threshold phenomenon, reminisever, it has been proven that in the unsatisfiable phase one
cent of a phase transition, is observed: tor « (K), all has to go beyond the RS ansatz and develop a replica sym-
formulas have at least one solution with probability 1, metry breakingRSB) scheme. This is indeed a very difficult
whereas fora>a (K) any formula has no solution with task, since the order parameters for dilute systems have a
probability 1. much more intricate structure than for infinitely connected

Different values ofK lead to different critical behaviors. (IC) cases[5-7,29. Recent progress in this direction was
WhenK =1, the model is unsatisfiable for all finite values of presented in Ref9].
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.1 : ,4 .6 o9 tion of the variables grows continuously. F&=3 the

R - equivalent geometrical problem relies on the theory of hy-
s NS . e 10 pergraphs, for which less is known. The percolation occurs at
‘- - a=a,=1[K(K-1)] [24]. In these two cases the system
% % '7 % percolates much before it becomes unsatisfiables a. .

. Indeed, the appearance of a contradiction requires an intri-
FIG. 1. A graphical representation of the formuHas (x1\/X, cate structure in the giant cluster.
VX3)/\(Xa\/X4\/X5) A\ (Xs\/X7\/Xg) . See the text for details. Let us define the ground state entropy of a formula
Sco(F) as the logarithm of the number of assignments of the
In this paper we rederive a generic expression for thevariables that minimize the number of violated clauses: If
entropy ofK-sat using a very simple method that avoids theis satisfiable Sg(F) is the logarithm of the number of solu-
use of replicas. Furthermore, the method allows us to comtions of F. It is clear from the cluster definition th&gs is
pute the finite-size corrections. Our derivation gives informa-the sum of contributions of the different independent subfor-
tion about the domain of validity of Monasson and Zecchi-mulas:
na’'s conjecture that the RS ansatz is exact in the satisfiable
phase. We explain the expansion using the formalism of
K-sat, but the line of reasoning can be applied to any dilute Ses(F)=no(F)In2+ Zl Ses(Fr). )
system in the dilute regime. In Sec. VI we shall analyze the
Viana-Bray mode([5] along the same lines. We are interested in the entropy averaged over the en-

semble of formulasggs. We shall henceforth denote en-
. METHOD semble averages with an overbar. As stressed in Sec. Il, this

Let us start this section by setting the notation and defin2verage 1s twofold. Indeed, clusters can be separated into

. . . . ensembles with the same topology, ignoring for the moment
ing a set of notions that will be used later. Given a forntila . . . ' . )
of K-sat, two variables; andx; are calledadjacentif there the sign assignment of the literals. Thus the averaging pro

) g ; i : fi h h I f th
is at least one clause iR in which bothx; andx; appear, ceeds in two steps: one first chooses the topology of the

irr tive of the fact that th re neaated or not. Tw cluster, with its associated probability, and then one averages
espective of the 1act that In€y are negated or not. %ver the two possibilities for each literal in the cluster. For a
variables areconnectedf and only if there is a path of ad-

jacent variables between themclusteris a set of connected given cluster, once the latter average is performed, the en-

Jvariables that are disconnected from all others. Let us lab {fopy depends only on the topology of the cluster. This re-
i . . ) ark allows us to rewrite the average of the sum in@gin

with an integerr the different clusters of the formull, r

) a more convenient manner. If we introduce a new intgger
=1,... N,(F), whereN,(F) is the total number of clusters - ;
in F. We shall callng(F) the number of variables that do not that labels all possible topologies, andF) and(S, are the

bel : lust numbers oft-like clusters in formulg= and the average over
e_(r)rr]ng 0 3”}}_’ {:t_us er. to bict For inst the sign assignment of the entropy of thike clusters, re-
ese detinitions are very easy 1o picture. =or 'ns.anceSpectiver, we arrive at the following expression for the av-

take a 3-sat problem with ten variablés; 1, . . . ,10,that is era i

) it ged entropy:
defined by the formulaF=(x;\/X2\/X3)/\(X3\/X4\/X5)
N\ (Xg\/X7\/Xg). The variables=9 and 10 do not belong to
any cluster; thusg(F)=2. A graphical representation of Ses= Et [nd(Sy- 5
each clause is very useful. We associate a point to each vari-

able. Each clause is represented bstar with K legs, three  Here we have included the isolated variables in the sum,

in the example, with end points that represent the variablegssociating them with the indéx 0, S,=In 2 and we denote

In formula F there are two clustersN;=2, that link i the average number ofike clusters with[n,].

=1,...,5and =6, 7, and 8, respectively. When a variable A more convenient expression fdm,] can now be

appears in twoor morg clauses, it will be shared by two \yorked out. Let us calki(F) the function which takes the

stars. This is the case in the cluster on the left of Fig. 1. Morg,5,e 1 if the variablg belongs to at-like cluster of the

complicated structures are possible, particularly wNeand  ¢or1a F and 0 otherwise; let, be the number of variables

M are large. The assignmerf(x;) of the ith literal in a in such a cluster. Then

clause can be represented with a fienus sign on its leg.

These are the signs in Fig. 1. In this way, a one-to-one cor- 1 i

respondence between formula and graphs is constructed. n(F)= L_t EI Xi(F), 6)
Whene is small, the typical cluster size is expected to be

small as well, as there are much fewer clauses than variableghich implies

Indeed, forK =2 this problem is the one of percolation in an

infinite-dimensional space, also known as the random graph. 1 1 .. P

Many properties of this model are knoy23], among which ﬁ[nt]:ft[xt]: [ @

the fact that fore<<1/2 all variables belong to clusters of size

at most proportional to IN in the thermodynamic limit. whereP,=[X{] is the probability that a given variable be-

When a crosses 1/2 a giant cluster containing a finite frac-longs to at-like cluster. Finally,

Ne(F)
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1 1
NSGSZEt L_tpt<S[>- (8 N
° ®------ . [ 30 ]

P, and(S;) can now be obtained using elementary combina- a b c
torial arguments and simple enumeration.

This formulation can be adapted to any quantity for which
the clusters contribute additively, the free energy for in- "
stance, and to other dilute problems where there is also a RS SUNUNIPPS ¢ ® - o

. . . [ 3 . 3

decoupling in the randomness between a geometrical part .
and an interaction one, as in the Viana-Bray md&él d e

IV. CLUSTER EXPANSION OF THE K-SAT ENTROPY . . . . 0\‘ /,O

In this section we shall apply the cluster expansion to the o o e | @ '\. .“.“.
calculation of the average entropy of randé@sat. For our f g h
present purposeld =1-sat is not interesting, since it is un-
satisfiable for all finite values o&. We shall then start by FIG. 2. Treelike clusters that contribute ko= 2-sat.
analyzing in detailK =2-sat. Afterwards, we shall discuss
how the approach generalizes to larger valuek of made up of two parts: if the clauses require the same sign for

the central variable, one can find five solutions of the for-
A. K=2-sat in the thermodynamic limit mula; if the clauses are contradictory for the central variable,

there are only four solutions.

For a cluster ofn variables connected by distinct Expanding ina up to O(a?), we obtain

clauses, the probabilit?, reads

. M 2 P[(N=n)(N—n—1)\M-P 1—— (3 ,. (80} o® [32°7°
Py=p! o\ N(N=1) N(N—1) NSGS—InZvLaIn 1 +a“ln 81 +?In @
N—1 ot 222551607 1367 3241 7
x(n—l)!( n—l) Kt. © +15 In( 22167168 (1)

Let us briefly describe the origin of the factors in this equa- ) _ . ] )
tion. Each of thep clauses is chosen with probability Monasson and Zecchina obtained this series by using the

2[N(N—1)] at each of theM steps in the formula genera- replica tr_ick, with a RS ansatz, to average the free-energy of
tion process. For the variables belonging to the cluster to b&1€ Physical model related to 2-48. The averaged entropy
disconnected from all other sites, thé—p other clauses follows from the averaged free-energy density, that itself de-
must belong to the set of theNEn)(N—n—1)/2 clauses pends_ on the probabmty dlstr_|but|on Qf the I(_)cal f|eld_s. This
connecting the other sites. The first two factors come fronfluantity is determined by an integrodifferential equation that
the possible permutation of tiesteps where the considered €annot be solveq analyt|qally: Monasson and Zecchina _devel—
clauses appear. The last three factors arise from the freedofip€d @ perturbative solution im that allowed them to derive
in the choice ofn—1 sites connected to the chosen site. Ina series foiSs/N that coincides, up t@®(a*), with the one
particular,K, is a symmetry factor that is equal to the num-in Eq. (11). The perturbative nature of this result is now
ber of distinct labelings of the sites, divided by §—1)!.  clarified from the cluster analysis. Note that we performed
Note that two labelings which lead to the same set of clausevo expansions to obtain this series: the cluster enumeration
are not distinct: for the linear three site cluster 1-2-3 and and an expansion in powers afof the exponentials i, .
3-2-1 correspond to the same labeling, with claud@ and  We shall discuss this issue further in Sec. V.
(23). But 1-2-3 and 2-1-3 are distinct.

In the thermodynamic limiN—c and « fixed, and forn TABLE I. The contributions of the clusters in Fig. 2.
and p finite, this expression is proportional %" 1P (p

=n—1). It is then finite only ifp=n—1, that is to say for Type L Kt (S
treelike clusters. This justifies the choice of distinct clauses. a 1 1 In2
In' t.his limit, for p=L;—1 andn=L,, this expression sim- b 2 1 In3
plifies greatly: c 3 32 (2 In2+In5)/2
Pt:(za)Ll—le—ZLtaKt_ (10) d 4 2 (3In2+In5+2In7)/4
e 4 2/3 (3In2+51In3)/4
The different clusters considered in the expansion are repre- f 5 5/2 (4In2+6In3+In5+2In11+1n 13)/8
sented in Fig. 2. For each type, the relevant quantities, ob- g 5 5/2 (9In2+2In5+2In 7+In 11+In 13)/8
tained by basic enumeration, are given in Table I. For in- 5 5/24 (13In2-4In5+In17)/8

stance, the average entropy of the linear three site cluster is
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FIG. 3. Loop diagrams contributing to theNLEorrections. - N
o . 'Y )
B. Finite-size corrections to the entropy ofK=2-sat L

There are two kinds of finite-size corrections to the ex-
pansion presented in EQL1). On the one hand, the probabil- £ 4. clusters yielding the
ity P, of a variable belonging to a treelike cluster habl 1/ k_—3_gat.
corrections that can be simply computed from the general

expressior(9). On the other hand, clusters that include loopsThjs result has to be checked against exhaustive numerical

leading contributions to

also contribute to the W corrections.
The expansion of expressid@8) up to order 1N for tree-
like clusters, withn=L; andp=L;—1, yields

Pt=(2a)Ltle2Lt“Kt{l+% 2L{(Li—1)—aL(L+1)
_(Lt—l)(Lt—Z)(Hg) ] 12
2 o

Clusters withl loops contribute to the orderN/. Hence,
if we only wish to compute the ¥V corrections, we can

evaluation of the entropy for small systems.

C. K=3-sat in the thermodynamic limit

The method described in detail f&r=2 can be used for
any value ofK. As the graphical representation and the enu-
meration of clusters are, however, more cumbersome than
for K=2, we shall present less detailed results for the case
K=3.

The probability for a given variable to be present in a
cluster ofL, variables that are linked by clauses is of order
1 in the thermodynamic limit only ifp(K—1)=L;—1

content ourselves with clusters that have only one 100pyich is the treelike condition for these hypergraphs. If this

These havé., variables and alsb; clauses. One obtains

Py (13

1
N(Za)Lte—ZLtuth ,

with K, defined as before, and multiplied by 1/2 if there is a

repeated clause. The one-loop clusters that we considered aF;P

represented in Fig. 3.

Including the 1N corrections in Eq(12) and the ones
stemming from the new diagrams in Fig. 3 and Ef§3)
calculated with the results of Table Il, the correction to

Sgs/N reads

1 34 a,2 2107556
N [e% In( %> +Zln< —3107724>
a3 31937156
+ = :
2 In 219951411136132417 (14)

TABLE II. The contributions of the clusters represented in
Fig. 3.

Type Ly Kt (S
a’ 2 1/2 (3In2+In3)/4
b’ 3 1/2 (9In2+3In3)/8
c’ 3 3/2 (5In2+41In3+In5)/8

03611

holds,

P,=(aK!)Pe LtoKK, (15)

In Fig. 4 we have drawn the diagrams leading to the main
contributions forK=3. In the text we give the analytic ex-
ession for generd (also see Table I}l

With these values we obtain

— 1 a’K?
NSGS—“‘]Z'F(I'H 1_2_K + 2 —In l__K
BT R S By (1 271
sInf1—-—— |+ 5In| 1— .
2 2K-1) 2 2K-1(2K—1)

(16)

Again we recover the RS result of R€B]. The contributions
to the finite-size corrections are similar to the ones discussed
for 2-sat; we obtain, at the leading orderdn

1aK2| L 1 1I L 1
N 2 | oK 2N oK_1
2% 11
—ZIn[1- ——||. (17
2 ( 2“<2K—1>H
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TABLE 1ll. The contributions of the clusters represented in Fig. 4.

Type Lt K (S
a” 1 1 In2
b” K K/K! In(2%-1)
c” 2K—1 K2(2K—1)/[2(K!)?] 2In[1+2%(2% 1~ 1)]+ 2In[2K(2¢ - 1)]

We have shown that the perturbative analysis of the R$he correct result for the entropy. Our argument is based on
ansatz leads to a series inwhich leading orders coincide the drastic influence of loops on this quantity. Let us com-
with the ones stemming from tHanite cluster expansion for pare the entropy of a loop and of a linear cluster of the same
all K. In Sec. V we shall discuss the relevance of the contrisize, for 2-sat. There are roughly twice as many solutions for
butions from the infinite cluster that appears at the percolathe linear cluster as for the loop, as one does not require the
tion transitiona,<a.. ending variables to be the same. The difference of entropy

between the two should then be finite. As there are an exten-
sive number of loops in the percolating cluster, one can ex-
V. DISCUSSION pect a finite deviation in the average entropy per site between

The domain of validity of our expansion, and of the re- the result assuming a tree Iike; ;tructurg of the giant cluster
sults obtained with the replica methdd], can be enlight- (i.e., the expansion ir of the original serigsand the correct
ened by studying the percolation phenomenon in detail. Th@N€- _ _ _ _
series expansion in E@8) is ordered following the index _ We have examined the;e issues Wlth the_help of numerical
that is directly related to the size of the clusters. The depensimulations of systems with small sizes. First, we compare
dence ona is involved, since the coefficien®, are « de-  the averaged total entropy per degree of freedsfi, to the
pendent via an exponential times a power. The expansion ofalue predicted by the series expansion once reordered in
the exponential factors in powers afleads to a rearrange- powers ofa. In Fig. 5 we plotS/N against 1IN with lines
ment of the series in powers of. points + for K=2-sat problems witiN=16 (50000, 20

The range of validity of both series is not obvious. We can(50000, 24 (50000, 28 (10000, 32 (15000, 36 (10000,
start by analyzing the simpler seri&sP; that should count and a,<a=0.75<«,. For each sample we computed the
the total fraction of sites and be identical to 1. Ror2, its  entropy by exhaustive enumeration. The numbers between
direct summation yields 1 for<a, and 1-P for a>a, parentheses are the numbers of realizations of random in-
whereP is the solution to + P=e 2%" [see Eq.(18) be-  stances oK-sat used to compute the averages. The accord
low]. Thus it fails abover,, because of the emergence of awith the analytical prediction of the truncated series expan-
giant cluster at the percolation transition. Instead, if one exsion in the thermodynamic limithorizontal line belowy, and
pands the exponentials in powers @f the result is>;P, including 1N corrections(tilted line above, is very good
=1+0Xa+0Xa’+---. The sum yields 1, independently within 0.3%. We have also computed the varianchi(5?
of «, even beyond the percolation threshold. Thg rearrar!ge;gz), and checked that it is in good accord with the analyti-
g]ue;r:tiltg powers ofa captures the correct behavior of this .o a1t 0.0262, that we obtained with an extension of the

One can conjecture that the rearrangement yields the ex-
act result for alla for all quantities that depend mainly on 0.47 T l I I I l
the locally treelike structure of the percolating cluster, and
only weakly on its loops, which show up only on a scale of
order InN. As can be seen in E¢9), the exponentials i,
arise from the requirement that the considered cluster is dis &
connected from the rest of the sites. Expanding the exponené 0.468
tials amounts basically to assuming that a subtree of the giare
cluster gives the same contribution as its disconnected coun

0.469

terpart. The alternative signs arise from the need to avoid the 0467 & ]
double counting of the smaller clusters contained in the giani
cluster. 0.466 L 1 1 1 1 1

As regards the calculation of the averaged entropy;, if one 0 00l 002 003 004 005 006 007

could compute all the terms in E() and sum the series, the 1/N

result would be exact under the percolation threshaelgl, FIG. 5. The averaged entropy per site =2 and «=0.75.

=1[K(K—=1)]. Indeed all sites belong to clusters of size atthe sizes arti=16, 20, 24, 28, 32, and 36. The lower straight line
most proportional to IN in this regime. As soon as goes indicates the value given by the truncated series expansion found
beyonde,, the direct summation of E8) should fail. with the replica method in the thermodynamic lirfip to O(a®)],

In spite of the discussion of the next to last paragraph, wend the upper curve with line points includes thid tbhrrections for
do not expect that reordering the series in powera gives  each value of.
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FIG. 6. The averaged entropy of the maximum cluster per vari- FIG. 7. K=2. The fraction of sites belonging to the largest
able, Syax/N, the factorized averag8yax /LuaxLmax/N and the  cluster. The asymptotic limiN—-co is approximately reached for

semianalytical predictio sy Suax /Luax as functions of M for N~10000, wherelyax/N is “finite” only above the percolation
a=0.75 andK = 2. thresholda,(K=2)=0.5. The analytical expression is given by the

solution to Eq(18) and it fits the data very accurately far>0.6 as

cluster expansion described in preceding sections. soon asN>1000._ We have verified that all other variables are dis-
tributed among finite clusters.

Even if the accord between numerical results and theory
is almost perfect for these small sizes, a more careful inspec- tion. M itis | tant t te that th h
tion of the different contributions to the total entropy showsMeration. Vioreover, it 1s important to note that the approac

that one could expect important deviations for increasing to the asymptotic value is nonmonotonic since, for these val-

We have separately computed the contribution of the IargeéfeS OfN, the approach to the asympote comes from below,

cluster. Figure 6 represents its study. Here we plot, Withwfg)ilssone can easily prove thaPyax(N=4,a=0.75)

crosses, the averaged entropy of the largest cluster, per de- Finallv. the third in Fi h
gree of freedomSyax /N. Its contribution, even for these . inatly, ,,t e third curve in Fig. Gstars represents the
improved” contribution of the largest cluster, 0.5828

small sizes, represents roughly half of the total entrompte 2 -"=- : R
that below the percolation threshold the contribution of theSMax /Luax. For N>20 the improved curve is still higher

largest cluster is much smaljerand this does not seem to than the actual one, and a linear fit yields the limiting value

vanish in the thermodynamic limit. A simple linear fit of "mNﬁ‘”SMAX/NNIO'Zl?St.O'OOO&.f. . imulati
Sy /N yields, when N—oc, the finite limit 0.1906 This numerical analysis, even if it is based on simulations

+0.0008. This may be taken as a guess of a lower limit foror:c very s_rg]al_l sys]Eerr]ns and Tlg_hly sl,peculgtl}/_ef sgggﬁstsh that
the contribution of the largest cluster. the contribution of the percolating cluster is finite in the ther-

In the same figure we compare the averaged entropy d[podyamf I'tr;]“t' O[‘ the afr1tar\1lyt|cal S'?i.’ It mllghtt be {:)Iosy?lfe
the largest clusteiSyax /N to the “factorized” quantity 20 cotmtp))u tek' €en r?tpyfoth € percolating Ct;ljs er,t_a leas I?r
o /NSy /o » Where Lya is the number of vari- -sat, by taking profit of the numerous mathematical results

ables in the largest cluster, that is represented with square%n the structure of random grapf3]. Such a study is nec-
essary to settle the problem.

For finite sizes we have shown that these two quantities co S . .
q This picture could also explain the discrepancy between

incide. The good accord between the two curves suggests cal studi dari bound for th | £ th
that the factorization also holds whéhs oo numerical studies and a rigorous bound for the value of the

This observation suggests an improvement of the finite XPONeNt governing the size of the scaling window of the

size numerical study. If weassumethat the factorization satisfi_ability transiti_or{26—28. For the relatively small sys-
holds in the limitN——o for the percolating cluster, we can tem sizes first studied, the observed exponent may have been

then replace the fraction of sites that belong to the Iarges?;tgéﬁg c[blyg]peArtCIc()aI?tleorns’i?esslt;?ﬁ/r:nrgg)tﬂzrrnea?tlig]a? gggiggt%gt
cluster,Pyax=Lwax /N, by its analytical value in the ther- : 9 ' ’

A, Lo exponent is purely due to the satisfiability threshold inside
modynamic limit. This is given by the giant cluster; one might observe the true exponent for
K1 lower system sizes by studying the probability of the largest

1-Puax=exp{aK[(1=Pyax)" " "—11}.  (18)  cluster to be satisfiable.

Let us briefly summarize the route followed in studies
This result is obtained using a self-consistent equation on thibased on the replica trick to attempt to identify the effect of
generating function that counts the number of sites in finitehe percolation transition within this calculati¢8]. In the
size clusterd25]. For K=2 and «=0.75, Pyjax ~0.5828. RS ansatz, an intricate integral equation over the probability
Figure 7 displaysPyax as a function ofa for K=2 and of local fields,P(h), that is the order parameter of the sys-
different system sized\=25, 100, 1000, and 10000. One tem, is obtained. FronfP(h) all thermodynamic quantities
sees that the percolation transition is reached only for todollow, including the entropy of the satisfiable phase. As an
large a sizeN~ 10000, that is far beyond the largest sampleanalytical resolution of the equation that determirig$)
for which one can compute the entropy by exhaustive enuseems out of reach, it has been solved order by order. in
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This yields ana expansion for the entropy which is in exact culty in the study of dilute models is that even without RSB,
coincidence with ours up t@(a*) for K=2 and up to the order parameter is a function instead of a number as in
O(a?) for K=3. It seems natural to assume that the twothe IC case. In order to introduce RSB, one has to cope with
expansions coincide to all orders. The RS ansatz is thuan order parameter which is at least a functional, leading to
proven to be exact for allx such thatae<a,=1[K(K  very difficult calculations.
—1)]. Beyond this value if, as we discussed above, the in- The mean connectivity per spaplays here the same role
fluence of the loops on the entropy of the percolating clustegas « in our expansion of the 2-sat entropy. As opposed to
is not negligible, two possibilities arise: either the RS ansatK-sat, for the Viana-Bray model the percolation and the para-
is wrong, or a more refined handling of the integral equatiormagnetic(PM) to spin-glass transition occur at the same
on P(h) is required[29]. A careful analysis of this problem critical valuec=1. In the dilute phasec<1, the clusters
is worthwhile. One could, for instance, investigate the preshave not percolated and the model is in the PM pliagg
ence of a singularity at the percolation threshold. In any caselhe statistical properties in this phase can be studied with the
the fact is confirmed that the entropy of the satisfiable phaseluster expansion. The average free energy per site reads
remains finite up to the satisfiability transition: at the thresh- .
old a finite, even if small 0.2 for K=2), fraction of sites P S L1l Tho
are in finite-size clusters, and their contribution provides a ,8f—§t: LtC tre KiinZy, @D
lower bound for the entropy of the system.

where the overline denotes an average with respect &md

V1. DILUTE SPIN GLASSES: AN EXACT SOLUTION FOR only tree clusters contribute in the thermodynamic limit. This
THE PARAMAGNETIC PHASE OF THE VIANA is the analog of Eq(8) with a slightly different expression
BRAY MODEL for P, where 2 is replaced byc. Z, is the partition function

of the cluster. One can easily prove that, for trees,

Spin glasses are magnetic systems where the interactions o
between degrees of freedaisping are disordered. The key InZ;=L;In2+(L;—1)IncoshB]d, (22
guantity that determines all the statistical properties of such
systems is the free energy averaged over the distribution dfrespectively of the topology. Then the sum of symmetry
the interactions. In most cases this average can only be corfactors for all trees oL, sites is LtLt_zl(Lt—l)! (a well-
puted with the replica trick18], often involving technically  known result from graph theory81]), and results in
subtle replica symmetry breakin@®SB). For IC models in

which each spin interacts with all others in the sample, such o (e 9k 1| ——

as the Sherrington-Kirkpatrick modg80], the RSB scheme —pf=In2 kzl —a (e +Incoshp)

that yields the exact solution in both high- and low- - '

temperature phases is well understood. The final aim, far “ (e )k

from being reached, is to determine the nature of the spin- X ckzl 7 (k— 1)(ck)k2>. (23

glass phase of disordered models od-dimensional lattice
with only short range interactions. Dilute spin glasses can b%

. : ) ~~The two sums can be evaluatéd. the Appendix to yield
viewed as an intermediate step between these two limits: tuf PP xtoy

each spin interacts with a finite number of other spins, but c

the model includes no notion of distance since the “neigh- —Bf=In2+ > In coshpJ. (29
bors” are randomly chosen from the whole set of spins of the

system. This result has a simple interpretation: from EB2), each

~The stgmdard dilute szin];glass model was introduced Dyjie contributes with In2 to the free energy, each link with
Viana and Bray[5]. It is defined by the following Hamil- IncoshpBJ for treelike structures. As there abe¢ sites and

tonian involvingN classical Ising spinsG = = 1: cN/2 links on average, the result follows. One obtains ex-
actly the same free energy following the replica method with
H=-> Ji;SS; - (19 aRS ansatz. The exactness of the RS ansatz in this phase is
i#] then proven.
. ) ) o ] The cluster expansion allows one to compute finite-size
The interactions);; are independently distributed with the ¢orrections in a rather simple manner. These read, up to
same probability law: O(c3/N),

c 1/ c— 4 -
NPUip)- (20 N| 32N coshBJ+c® 3/n2+1Incosha]

p is normalized to 1, and has average and mean square de-
viation of order 1 to obtain a sensible thermodynamic limit.
is the mean connectivity per spin.

Despite numerous studi¢5—7], a complete understand- whereJ,, J,, andJ; are three independent couplings taken
ing of this model has not yet been reached. The main diffifrom the probability distributiop(J;;). It will be very inter-

1
+ 6In(1+tanh,BJ1 tanhBJ, tanh,BJ3)) } ,
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esting to confront this result with the finite-size corrections “ (e o)k
to the replica calculation using the RS ansatz. As inkksat A= E K (ckk1=1, (A1)
problem, the expansion cannot be used beyoad, since it k=1 =
does not take into account the giant cluster appearing at the
percolation transition. ® ok
) o 1
B=, (k—1)(ck)k2==. (A2)
k=1 k! 2

VII. CONCLUSIONS AND PERSPECTIVES

The cluster expansion relies on very simple combinatorial H  rell h ical identi ith
arguments. It allows one to solve optimization problems in e proof relies on a mathematical identity proven wit

the “easy” phase, avoiding the introduction of replicas, andthe help of analytical function too[83]. Letw(z) be a given
it is a general method to obtain finifé corrections. Most function which can be inverted &{w). Then the coefficients

importantly, it has allowed us to signal the possible need foff the series expansion afw) are obtained via the follow-
a revision of the replica solution of thi€-sat, and similar 'N9 €XPressions.
problems, with two successive percolation and easy-to-hard
transition. = q
For spin glasses without a difference in these two transi- zZ(w)= >, —bwK, (A3)
tions, the interest of the method is less apparent, as highly k=1 k!
diluted systems are in the less interesting PM phase. Still it
would be interesting to test if the RS ansatz is exact for any
spin-glass model under its percolation threshold, as was dk? t\K
proven here for the Viana-BrafwB) spin glass in the ther- bk:dtk—l W
modynamic limit. t
Let us note, however, the difference in the percolating and
critical behavior ofK-sat and the Viana-Bray dilute spin Let us consider the function(z) =z exp(—c2), which is a
glass. In the former, percolation occurs before the satisfiabilpjjection from[0,1] to [0, ¢] if c<1. The coefficients of
ity transition (ap< a¢); in the latter both phenomena arise at the serjes expansion of the reciprozélv) are
the same value of the control parameter=(1). This can be
understood as being due to the fact that 2-sat is, in a way,

. (A4)
=0

less frustrated than the VB spinglass. Two manifestations of d<-t t\" 1
this fact are given by the behavior of a single loop and a bk:dtk_l oot = (ko) . (A5)
linear cluster. A single loop in 2-sat is always satisfiable t=0

while in the VB spinglass it is frustrated each time there is an
clustor i 2-5at can be satifed by a arge number of configu "USA~2(6 =L, asw(1)-e .

) 2 . y alarge number of configu- 1o ga06nd series can be transformed ugingl
rations while, in the VB spinglass only two-spin configura-
tions satisfy all bonds.

The cluster expansion can be applied to a variety of inter- 1-e ¢
esting problems. For instance, algorithms that solve satisfi- B= ->
ability problems through local search, like walk-§32], can ¢ k=2
also be studied with this methdd?2]. The number of steps
needed to solve a formula is the sum of the number of stepﬁ we define
needed to solve each cluster. Improvements of the algorithms
by means of better heuristics can thus be quant[fi.

efc)k

” (ck)k=2. (AB)

(W)Ei Vﬁ(ck)k_z (A7)
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APPENDIX (A8)
In this Appendix we shall derive a proof of the two sum-
mations used in Eq23): This yields the final resulB=1/2.
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