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Cluster expansions in dilute systems: Applications to satisfiability problems and spin glasses
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We develop a systematic cluster expansion for dilute systems in the highly dilute phase. We first apply it to
the calculation of the entropy of theK-satisfiability problem in the satisfiable phase. We derive a series
expansion in the control parameter, the average connectivity, that is identical to the one obtained by using the
replica approach with a replica symmetric~RS! ansatz, when the order parameter is calculated via a perturba-
tive expansion in the control parameter. As a second application we compute the free energy of the Viana-Bray
model in the paramagnetic phase. The cluster expansion allows one to compute finite-size corrections in a
simple manner, and these are particularly important in optimization problems. Importantly enough, these
calculations prove the exactness of the RS ansatz below the percolation threshold, and might require its
revision between this and the easy-to-hard transition.
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I. INTRODUCTION

Very few analytical tools have been successfully e
ployed to study disordered systems beyond mean fi
Mainly, one can mention the functional renormalizati
group analysis@1#, high-temperature expansions of finite d
mensional systems@2#, expansion in the concentration of di
ordered models defined on finite dimensional lattices@3#, and
expansions around mean-field theories@4#. The replica
method has been used to study dilute spin-glass mo
@5–9# and, even if it allows one to obtain a number of an
lytical results, it has been particularly difficult to impleme
when applied to dilute systems. It is then desirable to
velop other analytical methods to treat these problems
least in their simplest phase. In this paper we investigate
independent analytical approach that is based on a clu
expansion. It allows one to compute several ‘‘additiv
quantities of interest in dilute systems such as the ene
density, the entropy, the free energy, etc. We shall apply
tool to the study of two standard problems, with definitio
recalled below, that are randomK satisfiability (K-sat! @10#
and the Viana-Bray dilute spin glass@5#. The method is simi-
lar to one of the techniques used by Weigt and Hartm
@11# in their study of the vertex-cover problem on a rando
graph. The application to other dilute systems is straight
ward. Some of the advantages of this method with respec
replicas are the following: it allows one to compute the c
rections to the thermodynamic limit in a simple way; it a
lows one to pinpoint a possible limitation of the replica sy
metric ~RS! ansatz in the satisfiable and paramagnetic~PM!
phases of dilute disordered systems; and, not less im
tantly, it can be straightforwardly adapted to study the e
lution of some of the algorithms developed to analyzeK-sat
numerically@12#.

The paper is organized as follows. In Sec. II we define
randomK-sat problem and recall its main properties. In S
III we define the clusters, as well as several useful noti
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associated with them, and we introduce the cluster exp
sion. Section IV is devoted to an explicit calculation of th
entropy ofK-sat. The finiteN corrections are also describe
In Sec. V we discuss the interplay between the percola
and the easy-to-hard transition. We underline the con
quences of this calculation in regard to the validity of the R
ansatz in the satisfiable and PM phases. As an applicatio
a physical system, we discuss the calculation of the param
netic PM free energy of the Viana-Bray@5# dilute spin glass
in Sec. VI. Finally, in Sec. VII we present our conclusion

II. K SATISFIABILITY

The theory of complexity has been developed to char
terize worst-case instances of hard computational proble
@13#. A classification scheme, according to the time neede
find solutions with the best performing algorithms, or
prove that a problem is not solvable, is one of the outcom
of these studies. Of particular importance is the problem oK
satisfiability@10,14,15# (K-sat!, that has been used as a te
ing ground for these theories.

However, it was recently realized that in many interesti
cases in computer science, it is more relevant to determ
the properties oftypical, and not worst, realizations of
given problem@16#. Random K-sat, defined as the ensemb
of randomly generated instances ofK-sat, is the paradigm
and the goal is now to predict the behavior of a typical e
ment of the ensemble.

The relation between phase transitions, or threshold p
nomena, and intractability in random combinatorial pro
lems, has been stressed by several authors@17#. Problems
that are very hard to solve in the worst case are not so in
typical case, unless the control parameter takes values w
a finite interval that defines the critical region. Away from th
critical region, simple algorithms are capable of finding
solution, or showing that there is no solution, in polynom
time. RandomK-sat has a well-defined threshold pheno
enon.

Random K-sat, as well as other random optimizatio
problems, can be mapped onto disordered spin models.
mapping is done by associating the cost function in the
timization problem to an energy density in the physical s
©2001 The American Physical Society15-1
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tem @8#. Consequently, the random character associated
the choice of different instances in the optimization probl
translates into quenched disordered interactions in the ph
cal system. The most interesting optimization problems l
K-sat become spin-glass models of a particularly diffic
type, where each spin interacts with a finite fraction of oth
spins in the sample. These are called dilute spin glasses
they are interestingper sesince they appear as a case
intermediate difficulty between solvable mean-field sp
glasses and realistic finite-dimensional ones.

The quest for a threshold value of the control parame
then becomes a search for a phase transition. Thus all t
developed to treat disordered physical systems in statis
mechanics@18# can be adapted to study random optimizati
problems. In the context of randomK-sat, two main tech-
niques have been used so far: the replica approach in
thermodynamic limit@8,9,19,20# and numerical simulations
complemented by finite-size scaling when the number
variables remains finite@21#. The same two techniques a
used in the study of dilute spin glasses.

RandomK-sat is defined as follows. ConsiderN Boolean
variables,$x1 , . . . ,xN%, that can take two logical values:xi
is either true or false, for eachi. First, chooseK indices from
the set ofN elements,i 51, . . . ,N. Second, assign to each o
these indices theliteral x j , or its negationx̄ j , with equal
probability p51/2. Third, construct aclause C1 as the logi-
cal ‘‘or’’ ( ~) of the K previously determined literals. IfK
53 and N510, a possible clause isx1~ x̄5~x7. New
clauses are generated in an identical manner, independ
of the previous ones. One usually callsM the total number of
clauses. Aformula F is the logical ‘‘and’’ ~`! of M such
clauses. It reads

F5` l 51
M Cl5` l 51

M ~~ i 51
K zi

l !, ~1!

wherezi
lP$x1 ,x̄1 , . . . ,xN ,x̄N%. A solution, if it exists, is an

assignment of theN variables that satisfiesF, that is to say,
for which all clauses are verified simultaneously.

Note that in the process of generation of a clause,
random processes intervene. In the first process, one se
the variables; in the second process, once the variables
been chosen, one determines the requirements that wi
imposed on them. We shall later take advantage of this t
step process to perform an average over disorder in a co
nient order.

It is clear that, ifM!N, it will be very easy to find a
solution to F. Conversely, ifM@N, it will be extremely
difficult to satisfy all requirements simultaneously. Indeed
well-defined critical valueac(K) of the parametera
[M /N appears whenM→` andN→`, with their ratioa
kept fixed. This limit corresponds to a thermodynamic lim
in the physical language. A threshold phenomenon, remi
cent of a phase transition, is observed: fora,ac(K), all
formulas have at least one solution with probability
whereas fora.ac(K) any formula has no solution with
probability 1.

Different values ofK lead to different critical behaviors
WhenK51, the model is unsatisfiable for all finite values
03611
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a, i.e., ac(K51)50. WhenK52, K-sat has a continuou
phase transition atac(K52)51. This is a rigorous resul
proven by using a mapping on a directed graph problem@14#.
For K>3 only numerical estimates forac(K>3) and ap-
proximate results obtained with the replica method are av
able @8#; these yieldac(K53);4.2.

The replica method is a powerful tool of statistical m
chanics that allows one to compute the statistical proper
of a disordered physical problem in equilibrium with a the
mal environment. In order to use it to study optimizatio
problems in general, andK-sat in particular, one first map
the optimization problem onto a statistical mechanics mod
In the case ofK-sat, the physical model is a spin-glass mod
with dilute interactions of random sign. Indeed, a natu
representation of anyK-sat formula is obtained by introduc
ing anM3N matrix Cli , whose elements are

Cli 5H 0 if neither xi nor x̄iPCl

1 if xiPCl

21 if x̄iPCl .

~2!

The random generation of clauses is equivalent to a unifo
distribution of the matricesCli that satisfy the constraint
( iCli

2 5K, ; l .
A cost function forK-sat is given by the number of un

satisfied clauses in a given formula. If one identifies the lo
cal state wherexi is true, with a spinSi51 and the logical
state wherexi is false, with a spinSi521, it is then easy to
verify that the following expression counts the number
unsatisfied clauses,

E@$Cli ,xi%#5(
l 51

M

d (K)S (
i 51

N

Cli Si ,2K D , ~3!

where d (K)(a,b) is the Kronecker delta function. Using
polynomial representation ofd (K), this expression can be re
written as the total energy of a sum of dilutep spin-glass
models in a random field~several values ofp intervene, how
many depends on the value ofK) @8#.

Once the energy function is identified, one introduce
fictive temperatureT, then computes the average free ene
with the help of the replica trick, and finally takes the lim
T→0 to study the ground state properties of the physi
model. This gives access to quantities such as, for exam
the average entropy of the satisfiable phase. This is defi
as the average over disorder of the logarithm of the num
of solutions. One of the drawbacks of the use of the rep
method is that an ansatz is necessary to pursue the cal
tion. Even in the simplest phases, the satisfiable one
K-sat, it is not obvious to show that the simplest ansa
called replica symmetric, solves the problem exactly. Mo
over, it has been proven that in the unsatisfiable phase
has to go beyond the RS ansatz and develop a replica s
metry breaking~RSB! scheme. This is indeed a very difficu
task, since the order parameters for dilute systems hav
much more intricate structure than for infinitely connect
~IC! cases@5–7,22#. Recent progress in this direction wa
presented in Ref.@9#.
5-2
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CLUSTER EXPANSIONS IN DILUTE SYSTEMS: . . . PHYSICAL REVIEW E64 036115
In this paper we rederive a generic expression for
entropy ofK-sat using a very simple method that avoids t
use of replicas. Furthermore, the method allows us to c
pute the finite-size corrections. Our derivation gives inform
tion about the domain of validity of Monasson and Zecc
na’s conjecture that the RS ansatz is exact in the satisfi
phase. We explain the expansion using the formalism
K-sat, but the line of reasoning can be applied to any dil
system in the dilute regime. In Sec. VI we shall analyze
Viana-Bray model@5# along the same lines.

III. METHOD

Let us start this section by setting the notation and de
ing a set of notions that will be used later. Given a formulaF
of K-sat, two variablesxi andxj are calledadjacentif there
is at least one clause inF in which bothxi and xj appear,
irrespective of the fact that they are negated or not. T
variables areconnectedif and only if there is a path of ad
jacent variables between them. Aclusteris a set of connected
variables that are disconnected from all others. Let us la
with an integerr the different clusters of the formulaF, r
51, . . . ,Nc(F), whereNc(F) is the total number of cluster
in F. We shall calln0(F) the number of variables that do no
belong to any cluster.

These definitions are very easy to picture. For instan
take a 3-sat problem with ten variables,i 51, . . . ,10,that is
defined by the formulaF5(x1~x2̄~x3̄)`(x3~x4~x5̄)
`(x6̄~x7̄~x8̄). The variablesi 59 and 10 do not belong to
any cluster; thusn0(F)52. A graphical representation o
each clause is very useful. We associate a point to each
able. Each clause is represented by astar with K legs, three
in the example, with end points that represent the variab
In formula F there are two clusters,Nc52, that link i
51, . . . ,5 andi 56, 7, and 8, respectively. When a variab
appears in two~or more! clauses, it will be shared by two
stars. This is the case in the cluster on the left of Fig. 1. M
complicated structures are possible, particularly whenN and
M are large. The assignmentxi( x̄i) of the i th literal in a
clause can be represented with a plus~minus! sign on its leg.
These are the signs in Fig. 1. In this way, a one-to-one
respondence between formula and graphs is constructed

Whena is small, the typical cluster size is expected to
small as well, as there are much fewer clauses than varia
Indeed, forK52 this problem is the one of percolation in a
infinite-dimensional space, also known as the random gra
Many properties of this model are known@23#, among which
the fact that fora,1/2 all variables belong to clusters of siz
at most proportional to lnN in the thermodynamic limit.
Whena crosses 1/2 a giant cluster containing a finite fra

FIG. 1. A graphical representation of the formulaF5(x1~ x̄2

~ x̄3)`(x3~x4~ x̄5)`( x̄6~ x̄7~ x̄8). See the text for details.
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tion of the variables grows continuously. ForK>3 the
equivalent geometrical problem relies on the theory of h
pergraphs, for which less is known. The percolation occur
a5ap[1/@K(K21)# @24#. In these two cases the syste
percolates much before it becomes unsatisfiable,ap,ac .
Indeed, the appearance of a contradiction requires an i
cate structure in the giant cluster.

Let us define the ground state entropy of a formu
SGS(F) as the logarithm of the number of assignments of
variables that minimize the number of violated clauses. IF
is satisfiable,SGS(F) is the logarithm of the number of solu
tions of F. It is clear from the cluster definition thatSGS is
the sum of contributions of the different independent subf
mulas:

SGS~F !5n0~F !ln 21 (
r 51

Nc(F)

SGS~Fr !. ~4!

We are interested in the entropy averaged over the
semble of formulas,S̄GS. We shall henceforth denote en
semble averages with an overbar. As stressed in Sec. II,
average is twofold. Indeed, clusters can be separated
ensembles with the same topology, ignoring for the mom
the sign assignment of the literals. Thus the averaging p
ceeds in two steps: one first chooses the topology of
cluster, with its associated probability, and then one avera
over the two possibilities for each literal in the cluster. Fo
given cluster, once the latter average is performed, the
tropy depends only on the topology of the cluster. This
mark allows us to rewrite the average of the sum in Eq.~4! in
a more convenient manner. If we introduce a new integt
that labels all possible topologies, andnt(F) and^St& are the
numbers oft-like clusters in formulaF and the average ove
the sign assignment of the entropy of thet-like clusters, re-
spectively, we arrive at the following expression for the a
eraged entropy:

SGS̄5(
t

@nt#^St&. ~5!

Here we have included the isolated variables in the su
associating them with the indext50, S05 ln 2 and we denote
the average number oft-like clusters with@nt#.

A more convenient expression for@nt# can now be
worked out. Let us callXt

i(F) the function which takes the
value 1 if the variablei belongs to at-like cluster of the
formulaF and 0 otherwise; letLt be the number of variable
in such a cluster. Then

nt~F !5
1

Lt
(

i
Xt

i~F !, ~6!

which implies

1

N
@nt#5

1

Lt
@Xt

1#5
Pt

Lt
, ~7!

wherePt[@Xt
1# is the probability that a given variable be

longs to at-like cluster. Finally,
5-3
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1

N
S̄GS5(

t

1

Lt
Pt^St&. ~8!

Pt and^St& can now be obtained using elementary combi
torial arguments and simple enumeration.

This formulation can be adapted to any quantity for wh
the clusters contribute additively, the free energy for
stance, and to other dilute problems where there is als
decoupling in the randomness between a geometrical
and an interaction one, as in the Viana-Bray model@5#.

IV. CLUSTER EXPANSION OF THE K-SAT ENTROPY

In this section we shall apply the cluster expansion to
calculation of the average entropy of randomK-sat. For our
present purposesK51-sat is not interesting, since it is un
satisfiable for all finite values ofa. We shall then start by
analyzing in detailK52-sat. Afterwards, we shall discus
how the approach generalizes to larger values ofK.

A. KÄ2-sat in the thermodynamic limit

For a cluster ofn variables connected byp distinct
clauses, the probabilityPt reads

Pt5p! S M

p D S 2

N~N21! D
pS ~N2n!~N2n21!

N~N21! D M2p

3~n21!! S N21

n21 DKt . ~9!

Let us briefly describe the origin of the factors in this equ
tion. Each of thep clauses is chosen with probabilit
2/@N(N21)# at each of theM steps in the formula genera
tion process. For the variables belonging to the cluster to
disconnected from all other sites, theM2p other clauses
must belong to the set of the (N2n)(N2n21)/2 clauses
connecting the other sites. The first two factors come fr
the possible permutation of thep steps where the considere
clauses appear. The last three factors arise from the free
in the choice ofn21 sites connected to the chosen site.
particular,Kt is a symmetry factor that is equal to the num
ber of distinct labelings of then sites, divided by (n21)!.
Note that two labelings which lead to the same set of clau
are not distinct: for the linear three site cluster 1-2-3 a
3-2-1 correspond to the same labeling, with clauses~12! and
~23!. But 1-2-3 and 2-1-3 are distinct.

In the thermodynamic limitN→` anda fixed, and forn
and p finite, this expression is proportional toNn212p (p
>n21). It is then finite only ifp5n21, that is to say for
treelike clusters. This justifies the choice of distinct claus
In this limit, for p5Lt21 andn5Lt , this expression sim-
plifies greatly:

Pt5~2a!Lt21e22LtaKt . ~10!

The different clusters considered in the expansion are re
sented in Fig. 2. For each type, the relevant quantities,
tained by basic enumeration, are given in Table I. For
stance, the average entropy of the linear three site clust
03611
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made up of two parts: if the clauses require the same sign
the central variable, one can find five solutions of the f
mula; if the clauses are contradictory for the central variab
there are only four solutions.

Expanding ina up to O(a4), we obtain

1

N
SGS̄5 ln 21a lnS 3

4D1a2 lnS 80

81D1
a3

3
lnS 32976

515228D
1

a4

12
lnS 222551601136132417

32167168 D . ~11!

Monasson and Zecchina obtained this series by using
replica trick, with a RS ansatz, to average the free-energ
the physical model related to 2-sat@8#. The averaged entropy
follows from the averaged free-energy density, that itself
pends on the probability distribution of the local fields. Th
quantity is determined by an integrodifferential equation t
cannot be solved analytically. Monasson and Zecchina de
oped a perturbative solution ina that allowed them to derive
a series forS̄SG/N that coincides, up toO(a4), with the one
in Eq. ~11!. The perturbative nature of this result is no
clarified from the cluster analysis. Note that we perform
two expansions to obtain this series: the cluster enumera
and an expansion in powers ofa of the exponentials inPt .
We shall discuss this issue further in Sec. V.

FIG. 2. Treelike clusters that contribute toK52-sat.

TABLE I. The contributions of the clusters in Fig. 2.

Type Lt Kt ^St&

a 1 1 ln 2
b 2 1 ln 3
c 3 3/2 (2 ln 21ln 5)/2
d 4 2 (3 ln 21ln 512 ln 7)/4
e 4 2/3 (3 ln 215 ln 3)/4
f 5 5/2 (4 ln 216 ln 31ln 512 ln 111 ln 13)/8
g 5 5/2 (9 ln 212 ln 512 ln 71ln 111 ln 13)/8
h 5 5/24 (13 ln 214 ln 51ln 17)/8
5-4
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B. Finite-size corrections to the entropy ofKÄ2-sat

There are two kinds of finite-size corrections to the e
pansion presented in Eq.~11!. On the one hand, the probabi
ity Pt of a variable belonging to a treelike cluster has 1N
corrections that can be simply computed from the gen
expression~9!. On the other hand, clusters that include loo
also contribute to the 1/N corrections.

The expansion of expression~9! up to order 1/N for tree-
like clusters, withn5Lt andp5Lt21, yields

Pt5~2a!Lt21e22LtaKtH 11
1

N F2Lt~Lt21!2aLt~Lt11!

2
~Lt21!~Lt22!

2 S 11
1

a D G J . ~12!

Clusters withl loops contribute to the order 1/Nl . Hence,
if we only wish to compute the 1/N corrections, we can
content ourselves with clusters that have only one lo
These haveLt variables and alsoLt clauses. One obtains

Pt5
1

N
~2a!Lte22LtaKt , ~13!

with Kt defined as before, and multiplied by 1/2 if there is
repeated clause. The one-loop clusters that we considere
represented in Fig. 3.

Including the 1/N corrections in Eq.~12! and the ones
stemming from the new diagrams in Fig. 3 and Eq.~13!
calculated with the results of Table II, the correction
S̄GS/N reads

1

N Fa lnS 34

245
D 1

a2

4
lnS 2107556

3107724D
1

a3

2
lnS 31937156

219951411136132417
D G . ~14!

FIG. 3. Loop diagrams contributing to the 1/N corrections.

TABLE II. The contributions of the clusters represented
Fig. 3.

Type Lt Kt ^St&

a8 2 1/2 (3 ln 21ln 3)/4
b8 3 1/2 (9 ln 213 ln 3)/8
c8 3 3/2 (5 ln 214 ln 31ln 5)/8
03611
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This result has to be checked against exhaustive nume
evaluation of the entropy for small systems.

C. KÐ3-sat in the thermodynamic limit

The method described in detail forK52 can be used for
any value ofK. As the graphical representation and the en
meration of clusters are, however, more cumbersome t
for K52, we shall present less detailed results for the c
K>3.

The probability for a given variable to be present in
cluster ofLt variables that are linked byp clauses is of order
1 in the thermodynamic limit only ifp(K21)5Lt21,
which is the treelike condition for these hypergraphs. If th
holds,

Pt5~aK! !pe2LtaKKt . ~15!

In Fig. 4 we have drawn the diagrams leading to the m
contributions forK53. In the text we give the analytic ex
pression for generalK ~also see Table III!.

With these values we obtain

1

N
SGS̄5 ln 21a lnS 12

1

2KD 1
a2K2

2 F2 lnS 12
1

2KD
1

1

2
lnS 12

1

2K21
D 1

1

2
lnS 12

2K2121

2K21~2K21!
D G .

~16!

Again we recover the RS result of Ref.@8#. The contributions
to the finite-size corrections are similar to the ones discus
for 2-sat; we obtain, at the leading order ina,

1

N

aK2

2 F lnS 12
1

2KD 2
1

2
lnS 12

1

2K21
D

2
1

2
lnS 12

2K2121

2K21~2K21!
D G . ~17!

FIG. 4. Clusters yielding the leading contributions
K53-sat.
5-5
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TABLE III. The contributions of the clusters represented in Fig. 4.

Type Lt Kt ^St&

a9 1 1 ln 2
b9 K K/K! ln (2K21)
c9 2K21 K2(2K21)/@2(K!) 2# 1

2 ln@112K(2K2121)#1 1
2ln@2K(2K2121)#
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We have shown that the perturbative analysis of the
ansatz leads to a series ina which leading orders coincide
with the ones stemming from thefinite cluster expansion for
all K. In Sec. V we shall discuss the relevance of the con
butions from the infinite cluster that appears at the perc
tion transitionap,ac .

V. DISCUSSION

The domain of validity of our expansion, and of the r
sults obtained with the replica method@8#, can be enlight-
ened by studying the percolation phenomenon in detail.
series expansion in Eq.~8! is ordered following the indext,
that is directly related to the size of the clusters. The dep
dence ona is involved, since the coefficientsPt are a de-
pendent via an exponential times a power. The expansio
the exponential factors in powers ofa leads to a rearrange
ment of the series in powers ofa.

The range of validity of both series is not obvious. We c
start by analyzing the simpler series( tPt that should count
the total fraction of sites and be identical to 1. ForK52, its
direct summation yields 1 fora,ap and 12P for a.ap ,
whereP is the solution to 12P5e22aP @see Eq.~18! be-
low#. Thus it fails aboveap , because of the emergence of
giant cluster at the percolation transition. Instead, if one
pands the exponentials in powers ofa, the result is( tPt
51103a103a21•••. The sum yields 1, independent
of a, even beyond the percolation threshold. The rearran
ment in powers ofa captures the correct behavior of th
quantity.

One can conjecture that the rearrangement yields the
act result for alla for all quantities that depend mainly o
the locally treelike structure of the percolating cluster, a
only weakly on its loops, which show up only on a scale
order lnN. As can be seen in Eq.~9!, the exponentials inPt
arise from the requirement that the considered cluster is
connected from the rest of the sites. Expanding the expon
tials amounts basically to assuming that a subtree of the g
cluster gives the same contribution as its disconnected c
terpart. The alternative signs arise from the need to avoid
double counting of the smaller clusters contained in the g
cluster.

As regards the calculation of the averaged entropy, if o
could compute all the terms in Eq.~8! and sum the series, th
result would be exact under the percolation threshold,ap
51/@K(K21)#. Indeed all sites belong to clusters of size
most proportional to lnN in this regime. As soon asa goes
beyondap , the direct summation of Eq.~8! should fail.

In spite of the discussion of the next to last paragraph,
do not expect that reordering the series in powers ofa gives
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the correct result for the entropy. Our argument is based
the drastic influence of loops on this quantity. Let us co
pare the entropy of a loop and of a linear cluster of the sa
size, for 2-sat. There are roughly twice as many solutions
the linear cluster as for the loop, as one does not require
ending variables to be the same. The difference of entr
between the two should then be finite. As there are an ex
sive number of loops in the percolating cluster, one can
pect a finite deviation in the average entropy per site betw
the result assuming a tree like structure of the giant clu
~i.e., the expansion ina of the original series! and the correct
one.

We have examined these issues with the help of numer
simulations of systems with small sizes. First, we comp
the averaged total entropy per degree of freedom,S̄/N, to the
value predicted by the series expansion once reordere
powers ofa. In Fig. 5 we plotS̄/N against 1/N with lines
points 1 for K52-sat problems withN516 ~50000!, 20
~50000!, 24 ~50000!, 28 ~10000!, 32 ~15000!, 36 ~10000!,
and ap,a50.75,ac . For each sample we computed th
entropy by exhaustive enumeration. The numbers betw
parentheses are the numbers of realizations of random
stances ofK-sat used to compute the averages. The acc
with the analytical prediction of the truncated series exp
sion in the thermodynamic limit~horizontal line below!, and
including 1/N corrections~tilted line above!, is very good
within 0.3%. We have also computed the variance 1/N(S̄2

2S̄2), and checked that it is in good accord with the analy
cal result, 0.025a2, that we obtained with an extension of th

FIG. 5. The averaged entropy per site forK52 anda50.75.
The sizes areN516, 20, 24, 28, 32, and 36. The lower straight lin
indicates the value given by the truncated series expansion fo
with the replica method in the thermodynamic limit@up toO(a8)#,
and the upper curve with line points includes the 1/N corrections for
each value ofN.
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cluster expansion described in preceding sections.
Even if the accord between numerical results and the

is almost perfect for these small sizes, a more careful insp
tion of the different contributions to the total entropy sho
that one could expect important deviations for increasingN.
We have separately computed the contribution of the larg
cluster. Figure 6 represents its study. Here we plot, w
crosses, the averaged entropy of the largest cluster, pe
gree of freedom,SMAX /N. Its contribution, even for thes
small sizes, represents roughly half of the total entropy~note
that below the percolation threshold the contribution of
largest cluster is much smaller!, and this does not seem t
vanish in the thermodynamic limit. A simple linear fit o
SMAX /N yields, when N→`, the finite limit 0.1906
60.0008. This may be taken as a guess of a lower limit
the contribution of the largest cluster.

In the same figure we compare the averaged entrop
the largest clusterSMAX /N to the ‘‘factorized’’ quantity
LMAX /NSMAX /LMAX , where LMAX is the number of vari-
ables in the largest cluster, that is represented with squa
For finite sizes we have shown that these two quantities
incide. The good accord between the two curves sugg
that the factorization also holds whenN→`.

This observation suggests an improvement of the fin
size numerical study. If weassumethat the factorization
holds in the limitN→` for the percolating cluster, we ca
then replace the fraction of sites that belong to the larg
cluster,PMAX[LMAX /N, by its analytical value in the ther
modynamic limit. This is given by

12PMAX 5exp$aK@~12PMAX !K2121#%. ~18!

This result is obtained using a self-consistent equation on
generating function that counts the number of sites in fin
size clusters@25#. For K52 and a50.75, PMAX;0.5828.
Figure 7 displaysPMAX as a function ofa for K52 and
different system sizes,N525, 100, 1000, and 10000. On
sees that the percolation transition is reached only for
large a size,N;10000, that is far beyond the largest samp
for which one can compute the entropy by exhaustive e

FIG. 6. The averaged entropy of the maximum cluster per v
able,SMAX/N, the factorized averageSMAX /LMAXLMAX/N and the
semianalytical predictionPMAXSMAX /LMAX as functions of 1/N for
a50.75 andK52.
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meration. Moreover, it is important to note that the approa
to the asymptotic value is nonmonotonic since, for these v
ues ofN, the approach to the asympote comes from bel
while one can easily prove thatPMAX(N54,a50.75)
;0.75.

Finally, the third curve in Fig. 6~stars! represents the
‘‘improved’’ contribution of the largest cluster, 0.582
SMAX /LMAX . For N.20 the improved curve is still highe
than the actual one, and a linear fit yields the limiting val
limN→`SMAX /N;0.214360.0003.

This numerical analysis, even if it is based on simulatio
of very small systems and highly speculative, suggests
the contribution of the percolating cluster is finite in the the
modyamic limit. On the analytical side, it might be possib
to compute the entropy of the percolating cluster, at least
2-sat, by taking profit of the numerous mathematical res
on the structure of random graphs@23#. Such a study is nec
essary to settle the problem.

This picture could also explain the discrepancy betwe
numerical studies and a rigorous bound for the value of
exponent governing the size of the scaling window of t
satisfiability transition@26–28#. For the relatively small sys-
tem sizes first studied, the observed exponent may have
altered by percolation, as its asymptotic regime was not
reached@19#. At larger sizes, and in mathematical studies, t
exponent is purely due to the satisfiability threshold ins
the giant cluster; one might observe the true exponent
lower system sizes by studying the probability of the larg
cluster to be satisfiable.

Let us briefly summarize the route followed in studi
based on the replica trick to attempt to identify the effect
the percolation transition within this calculation@8#. In the
RS ansatz, an intricate integral equation over the probab
of local fields,P(h), that is the order parameter of the sy
tem, is obtained. FromP(h) all thermodynamic quantities
follow, including the entropy of the satisfiable phase. As
analytical resolution of the equation that determinesP(h)
seems out of reach, it has been solved order by order ina.

i- FIG. 7. K52. The fraction of sites belonging to the large
cluster. The asymptotic limitN→` is approximately reached fo
N;10000, whereLMAX/N is ‘‘finite’’ only above the percolation
thresholdap(K52)50.5. The analytical expression is given by th
solution to Eq.~18! and it fits the data very accurately fora.0.6 as
soon asN.1000. We have verified that all other variables are d
tributed among finite clusters.
5-7
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This yields ana expansion for the entropy which is in exa
coincidence with ours up toO(a4) for K52 and up to
O(a2) for K>3. It seems natural to assume that the t
expansions coincide to all orders. The RS ansatz is t
proven to be exact for alla such thata,ap51/@K(K
21)#. Beyond this value if, as we discussed above, the
fluence of the loops on the entropy of the percolating clus
is not negligible, two possibilities arise: either the RS ans
is wrong, or a more refined handling of the integral equat
on P(h) is required@29#. A careful analysis of this problem
is worthwhile. One could, for instance, investigate the pr
ence of a singularity at the percolation threshold. In any ca
the fact is confirmed that the entropy of the satisfiable ph
remains finite up to the satisfiability transition: at the thre
old a finite, even if small (;0.2 for K52), fraction of sites
are in finite-size clusters, and their contribution provide
lower bound for the entropy of the system.

VI. DILUTE SPIN GLASSES: AN EXACT SOLUTION FOR
THE PARAMAGNETIC PHASE OF THE VIANA

BRAY MODEL

Spin glasses are magnetic systems where the interac
between degrees of freedom~spins! are disordered. The ke
quantity that determines all the statistical properties of s
systems is the free energy averaged over the distributio
the interactions. In most cases this average can only be c
puted with the replica trick@18#, often involving technically
subtle replica symmetry breaking~RSB!. For IC models in
which each spin interacts with all others in the sample, s
as the Sherrington-Kirkpatrick model@30#, the RSB scheme
that yields the exact solution in both high- and low
temperature phases is well understood. The final aim,
from being reached, is to determine the nature of the s
glass phase of disordered models on ad-dimensional lattice
with only short range interactions. Dilute spin glasses can
viewed as an intermediate step between these two lim
each spin interacts with a finite number of other spins,
the model includes no notion of distance since the ‘‘neig
bors’’ are randomly chosen from the whole set of spins of
system.

The standard dilute spin-glass model was introduced
Viana and Bray@5#. It is defined by the following Hamil-
tonian involvingN classical Ising spins,Si561:

H52(
iÞ j

Ji j SiSj . ~19!

The interactionsJi j are independently distributed with th
same probability law:

P~Ji j !5S 12
c

ND d~Ji j !1
c

N
r~Ji j !. ~20!

r is normalized to 1, and has average and mean square
viation of order 1 to obtain a sensible thermodynamic limitc
is the mean connectivity per spin.

Despite numerous studies@5–7#, a complete understand
ing of this model has not yet been reached. The main d
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culty in the study of dilute models is that even without RS
the order parameter is a function instead of a number a
the IC case. In order to introduce RSB, one has to cope w
an order parameter which is at least a functional, leading
very difficult calculations.

The mean connectivity per spinc plays here the same rol
as a in our expansion of the 2-sat entropy. As opposed
K-sat, for the Viana-Bray model the percolation and the pa
magnetic ~PM! to spin-glass transition occur at the sam
critical value c51. In the dilute phase,c,1, the clusters
have not percolated and the model is in the PM phase@22#.
The statistical properties in this phase can be studied with
cluster expansion. The average free energy per site read

2b f 5(
t

1

Lt
cLt21e2LtcKt ln Zt, ~21!

where the overline denotes an average with respect tor, and
only tree clusters contribute in the thermodynamic limit. Th
is the analog of Eq.~8! with a slightly different expression
for Pt where 2a is replaced byc. Zt is the partition function
of the cluster. One can easily prove that, for trees,

ln Zt5Lt ln 21~Lt21!ln coshbJ, ~22!

irrespectively of the topology. Then the sum of symme
factors for all trees ofLt sites isLt

Lt22/(Lt21)! ~a well-
known result from graph theory@31#!, and results in

2b f 5 ln 2S (
k51

`
~e2c!k

k!
~ck!k21D 1 ln coshbJ

3S c(
k51

`
~e2c!k

k!
~k21!~ck!k22D . ~23!

The two sums can be evaluated~cf. the Appendix! to yield

2b f 5 ln 21
c

2
ln coshbJ. ~24!

This result has a simple interpretation: from Eq.~22!, each
site contributes with ln 2 to the free energy, each link w
ln coshbJ for treelike structures. As there areN sites and
cN/2 links on average, the result follows. One obtains e
actly the same free energy following the replica method w
a RS ansatz. The exactness of the RS ansatz in this pha
then proven.

The cluster expansion allows one to compute finite-s
corrections in a rather simple manner. These read, up
O(c3/N),

1

N F2
c

2
ln coshbJ1c3S 4

3
ln 21 ln coshbJ

1
1

6
ln~11tanhbJ1 tanhbJ2 tanhbJ3! D G ,

whereJ1 , J2, andJ3 are three independent couplings tak
from the probability distributionr(Ji j ). It will be very inter-
5-8
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CLUSTER EXPANSIONS IN DILUTE SYSTEMS: . . . PHYSICAL REVIEW E64 036115
esting to confront this result with the finite-size correctio
to the replica calculation using the RS ansatz. As in theK-sat
problem, the expansion cannot be used beyondc51, since it
does not take into account the giant cluster appearing a
percolation transition.

VII. CONCLUSIONS AND PERSPECTIVES

The cluster expansion relies on very simple combinato
arguments. It allows one to solve optimization problems
the ‘‘easy’’ phase, avoiding the introduction of replicas, a
it is a general method to obtain finiteN corrections. Most
importantly, it has allowed us to signal the possible need
a revision of the replica solution of theK-sat, and similar
problems, with two successive percolation and easy-to-h
transition.

For spin glasses without a difference in these two tran
tions, the interest of the method is less apparent, as hi
diluted systems are in the less interesting PM phase. St
would be interesting to test if the RS ansatz is exact for
spin-glass model under its percolation threshold, as
proven here for the Viana-Bray~VB! spin glass in the ther
modynamic limit.

Let us note, however, the difference in the percolating a
critical behavior ofK-sat and the Viana-Bray dilute spi
glass. In the former, percolation occurs before the satisfia
ity transition (ap,ac); in the latter both phenomena arise
the same value of the control parameter (c51). This can be
understood as being due to the fact that 2-sat is, in a w
less frustrated than the VB spinglass. Two manifestation
this fact are given by the behavior of a single loop and
linear cluster. A single loop in 2-sat is always satisfiab
while in the VB spinglass it is frustrated each time there is
odd number of antiferromagnetic couplings on it. A line
cluster in 2-sat can be satisfied by a large number of confi
rations while, in the VB spinglass only two-spin configur
tions satisfy all bonds.

The cluster expansion can be applied to a variety of in
esting problems. For instance, algorithms that solve sat
ability problems through local search, like walk-sat@32#, can
also be studied with this method@12#. The number of steps
needed to solve a formula is the sum of the number of s
needed to solve each cluster. Improvements of the algorit
by means of better heuristics can thus be quantified@12#.
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APPENDIX

In this Appendix we shall derive a proof of the two sum
mations used in Eq.~23!:
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A5 (
k51

`
~e2c!k

k!
~ck!k2151, ~A1!

B5 (
k51

`
~e2c!k

k!
~k21!~ck!k225

1

2
. ~A2!

The proof relies on a mathematical identity proven w
the help of analytical function tools@33#. Let w(z) be a given
function which can be inverted toz(w). Then the coefficients
of the series expansion ofz(w) are obtained via the follow-
ing expressions:

z~w!5 (
k51

`
1

k!
bkw

k, ~A3!

bk5
dk21

dtk21 F S t

w~ t ! D
kG

t50

. ~A4!

Let us consider the functionw(z)5z exp(2cz), which is a
bijection from @0,1# to @0,e2c# if c,1. The coefficients of
the series expansion of the reciprocalz(w) are

bk5
dk21

dtk21 F S t

te2ctD kG
t50

5~kc!k21. ~A5!

ThusA5z(e2c)51, asw(1)5e2c.
The second series can be transformed usingA51:

B5
12e2c

c
2 (

k52

`
~e2c!k

k!
~ck!k22. ~A6!

If we define

g~w![(
k52

`
wk

k!
~ck!k22, ~A7!

then B5(12e2c)/c2g(e2c). To computeg(w), we note
that g(0)50 and g8(w)5z(w)/(cw)21/c. By integration
and with the change of variablesz5z(w), one obtains

g~e2c!52
e2c

c
1

1

cE0

1

dz w8~z!
z

w~z!
5

12e2c

c
2

1

2
.

~A8!

This yields the final resultB51/2.
5-9
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